Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer.

نویسندگان

  • I H Shrivastava
  • M S Sansom
چکیده

Potassium channels enable K(+) ions to move passively across biological membranes. Multiple nanosecond-duration molecular dynamics simulations (total simulation time 5 ns) of a bacterial potassium channel (KcsA) embedded in a phospholipid bilayer reveal motions of ions, water, and protein. Comparison of simulations with and without K(+) ions indicate that the absence of ions destabilizes the structure of the selectivity filter. Within the selectivity filter, K(+) ions interact with the backbone (carbonyl) oxygens, and with the side-chain oxygen of T75. Concerted single-file motions of water molecules and K(+) ions within the selectivity filter of the channel occur on a 100-ps time scale. In a simulation with three K(+) ions (initially two in the filter and one in the cavity), the ion within the central cavity leaves the channel via its intracellular mouth after approximately 900 ps; within the cavity this ion interacts with the Ogamma atoms of two T107 side chains, revealing a favorable site within the otherwise hydrophobically lined cavity. Exit of this ion from the channel is enabled by a transient increase in the diameter of the intracellular mouth. Such "breathing" motions may form the molecular basis of channel gating.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

Homology modeling and molecular dynamics simulation studies of an inward rectifier potassium channel.

A homology model has been generated for the pore-forming domain of Kir6.2, a component of an ATP-sensitive K channel, based on the x-ray structure of the bacterial channel KcsA. Analysis of the lipid-exposed and pore-lining surfaces of the model reveals them to be compatible with the known features of membrane proteins and Kir channels, respectively. The Kir6.2 homology model was used as the st...

متن کامل

Computational Issues in Modeling Ion Transport in Biological Channels: Self-Consistent Particle-Based Simulations

In this work, a self-consistent Langevin dynamics simulator will be presented, and computational issues unique to the simulation of charge transport through ion channels will be addressed. The simulation approach is divided into two parts; the first is the development of an efficient model to account for the charge transport in bulk electrolyte solutions, while the second is the accurate repres...

متن کامل

Low free energy barrier for ion permeation through double-helical gramicidin.

The pentadecapeptide gramicidin forms a cation-specific ion channel in membrane environment. The two main conformations are the head-to-head helical dimer (HD) known as the channel conformation and the intertwined double helical form (DH) often refer to as nonchannel conformation. In this comparative study, the energetics of single potassium ion permeation by means of the potential of mean forc...

متن کامل

K(+) versus Na(+) ions in a K channel selectivity filter: a simulation study.

Molecular dynamics simulations of a bacterial potassium channel (KcsA) embedded in a phospholipid bilayer reveal significant differences in interactions of the selectivity filter with K(+) compared with Na(+) ions. K(+) ions and water molecules within the filter undergo concerted single-file motion in which they translocate between adjacent sites within the filter on a nanosecond timescale. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 78 2  شماره 

صفحات  -

تاریخ انتشار 2000